home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
C/C++ Users Group Library 1996 July
/
C-C++ Users Group Library July 1996.iso
/
vol_100
/
107_01
/
ctrig.c
< prev
next >
Wrap
C/C++ Source or Header
|
1984-06-03
|
3KB
|
104 lines
/* **** CTRIG.C *****
A group of programs in C, using the BDS-C floating point package,
as modified by L. C. Calhoun called FLOATXT, which compute some
commonly used transcendental functions - to wit*
sine, cosine, tangent and arctangent
convert degrees to radians, convert radians to degrees
These functions are discussed in detail in CTRIG.DOC
L. C. Calhoun
257 South Broadway
Lebanon, Ohio 45036 513 932 4541/433 7510
*** revision 13 July 1981 to 1) refine precision of constants,
especially pi related values 2) to utilize string constants
as pseudo static numeric constants. THIS WILL ONLY WORK WITH
BDS C V 1.44 (and hopefully later).
3) to add ARCTAN2() function to identify quadrant
*/
/* simple ones first converting degrees - radians */
char *degtorad(rad,deg) /*obvious arguments in 5 char fp */
char *rad, *deg;
{
char *fpmult(),*radindeg;
radindeg = "\71\36\175\107\373";
fpmult(rad,deg,radindeg);
return (rad);
}
char *radtodeg(deg,rad) /* 5 char fp arguments */
char *deg, *rad;
{
char *fpmult(), *deginrad;
deginrad = "\12\162\227\162\6";
fpmult(deg,rad,deginrad);
return (deg);
}
/* service function sinev which evaluates when range of angle
reduced to plus or minus pi/2 (90 deg) */
char *sinev(result,angle)
char *result, angle[5];
{
char *fpmult(),x[5],xsq[5];
char *coef[5],termreslt[5];
char *fpadd(),*fpasg();
int index;
/* use the exponent part of the floating point
to check for threat of underflow use small
angle approximation if appropriate */
if ( (angle[4] > 128) && (angle[4] < 226) )
{fpasg(result,angle); return (result);
} /* solution to fpmult underflow problem */
/* series coef are 1., -.1666666, .008333026, -.0001980742,
.000002601887 determined from coefset program */
coef[0] = "\0\0\0\100\1";
coef[1] = "\157\252\252\252\376";
coef[2] = "\271\242\103\104\372";
coef[3] = "\320\352\46\230\364";
coef[4] = "\246\15\116\127\356";
fpasg(x,angle);
fpmult(xsq,x,x);
setmem(result,5,0);
/* to this point the coef have been initialized, the angle
copied to x, x squared computed, and the result initialized */
/* now to do the polynomial approximation */
index = 0;
while ( (index <= 4) && ( (x[4] > 194) || (x[4] < 64) ) )
/* use index for loop, and exponent of x to avoid underflow
problems */
{fpmult(termreslt,coef[index],x);
fpadd(result,result,termreslt);
index++;
fpmult(x,x,xsq);
}
return (result);
}
/* here is sine(result,angle) with angle in radians */
char *sine(result,angle)
char *result, *angle;
{
char *fpmult(),*twopi,*halfpi;
char *mtwopi,*mhalfpi,*fpasg(),*fpchs();
char *pi,*sinev(),*fpadd();
char y[5],*fpsub();
int fpcomp(), compar;
int signsine;
/* some initialization required here */
signsine = 1;
twopi = "\171\356\207\144\3";
halfpi = "\171\356\207\144\1";
pi = "\171